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Abstract. This article seeks to explain the basic concepts of Quantum Computation. While classical computers rely on 
binary information transmitted through digital electrical signals and is processed through boolean logic, quantum 
computers represent information as qubits, which can exist in a linear combination of states, and follows the rules of 
quantum mechanics. They can be physically implemented as polarized photons, superconducting circuits and more. The 
article explores quantum logic gates, the challenge of quantum decoherence and how quantum error correction tries to 
mitigate it. Furthermore, computational complexity theory is introduced as a way of understanding the limitations of 
classical and quantum computers and their differences. Even though the type of computable problems are the same for 
quantum and classical, quantum computers  have some advantages  in efficiency for certain types of problems,  such as 
simulation of quantum systems, since the computations themselves are made in quantum systems, factorization of prime 
integers and unstructured search. 
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1. Introduction 

Quantum computing is a relatively new field that is at 
the direct intersection between computer science 
and quantum mechanics. By leveraging properties 
present at the quantum scale, we can represent 
information and make computations in quantum 
systems. But why use quantum computers to do 
computations instead of a regular computer? What 
kind of computations can a quantum computer do 
that a classical Turing machine can’t? Richard 
Feynman [1] observed that quantum systems cannot 
be efficiently simulated by classical computers, due 
the intrinsic properties of the systems. Furthermore, 
Peter W. Shor [2]   developed algorithms for quantum 
computers to factorize prime numbers and discrete 
logarithms in polynomial time, problems considered 
hard on a classical computer. 

The term “quantum computing” is becoming 
increasingly popular as it approaches mainstream 
media. Many believe quantum computing will 
completely shift the computing paradigm and is here 
to replace classical computers, without having any 
deeper knowledge of its functioning. As approaching 
a (relatively) new field, one can quickly lose sight of 
scientific ground. For this reason, the proposed 
article seeks to explain the foundations of quantum 
computing in a simple manner, from basic concepts 
of quantum physics, how information is represented 
in classical and quantum computers, to how they fit 
in the computational complexity theory.  

 

2. Research Methods 

A bibliographical review was conducted as the 
primary research method. This process involved a 
systematic identification and selection of relevant 
literature related to the topic in different knowledge 
databases. 

3. Quantum mechanics concepts 

To understand how a quantum computer works, it is 
first necessary to understand some concepts in 
quantum physics.  

3.1 Wave function and measurement 

Quantum particles exhibit both particle and wave 
properties, depending on the experimental 
circumstance.  

In classical physics, the act of measurement doesn’t 
affect an object. All the information of a classical 
object can be known with precision without 
necessarily disturbing it.  In quantum physics, this is 
not the case. The act of measurement of a quantum 
particle plays a fundamental role [3]. Before 
measurement, a quantum system can be described as 
a wave function, which is a complex-valued 
probability amplitude. This amplitude is a 
representation of the probability distribution of the 
system’s properties, like position and momentum. 

 After measurement, the wave function “collapses” to 
a random outcome according to the probability 
distribution and returns to a regular classical 
description. 



 

4. Classical Computation 

4.1 Information and processing 

Classical computing relies on binary information. 
Bits can be either in a 0 or 1 state and, as you increase 
the number of bits in a single string, you increase the 
number of possible representations by 2n, where n is 
the length of the binary word. Physically, computers 
use electrical signals to represent bits. A high voltage 
level represents 1 and a low voltage level represents 
0, for example. 

To make computations, logic gates are utilized. They 
perform on Boolean logic, that is, binary inputs to 
produce a single binary output. Some gates take two 
bits as input and produce a single bit output: the AND 
gate outputs a 1 only when both inputs are 1. The OR 
gate outputs a 1 only when at least one of the inputs 
is 1. The NOT gate is a single input gate that inverts 
the value entered. There are multiple logic gates, and 
together they are used to create circuits that can 
perform more complex computations.  

It is important to highlight that classical computing is 
mostly described and operated within the 
mathematical framework of discrete math, as it deals 
with discrete, binary data. 

5. Quantum computation 

5.1 Qubits 

In quantum computation, the elementary unit is a 
quantum bit, or qubit. The state of a qubit can be 
represented as a vector in a two-dimensional 
complex vector space:  

|𝜓⟩ = α|0⟩ + β|1⟩ 

Where |𝜓⟩ is the state vector (holds all the 
information of the system) of the qubit; |0⟩ and |1⟩ 
are the basis state, corresponding to the classical 
binary states 0 and 1. They can also be represented 
as matrices: 

|1⟩ =  [
0
1

] 

|0⟩ =  [
1
0

] 

α and β are complex numbers that describes the 
probability amplitude of the qubit being in the |0⟩ or 
|1⟩ states, respectively. It’s important to know that α 
and 𝛽 must satisfy the condition  

|α|2 + |𝛽|2 = 1 

since the probabilities must sum to one, as it 
guarantees the measurement to be in either state [4].  

This means that, different from a classical bit, which 
can only be at one state, qubits can exist as a linear 
combination of states, which is also called a 
superposition of states [5]. 

There is another way of visualizing single qubits, and 
that is in the form of a three-dimensional sphere, 

often called a Bloch sphere. It provides a way to 
visualize all the states that a qubit can possibly be in. 

 

Fig 1. Bloch sphere representation of a qubit.  

 Any state of a qubit in this representation can be 
written as: 

 

|ψ⟩ = 𝑐𝑜𝑠 ( 
θ

2
 ) |0⟩ + 𝑒iϕ𝑠𝑖𝑛 ( 

θ

2
 ) |1⟩ 

Where the angle θ corresponds to latitude and angle 
ϕ corresponds to longitude. 

There are a few different ways of physically 
implementing a qubit, such as using polarization of a 
photon; ion traps; superconducting circuits and 
more [6].  

5.2 Quantum logic gates 

Analogue to classic computing, quantum computers 
also use logic gates to perform computations. 
However, different types of gates are utilized. The 
following are some examples of quantum gates that 
operates on a single qubit: the Pauli-X gate, or just X 
gate, is the quantum equivalent of a classical NOT 
gate: 

𝑋: |0⟩ → |1⟩ or |1⟩ → |0⟩   

In the form of a matrix: 

X =  [
0 1
1 0

] 

The Hadamard gate, represented by H, puts a qubit 
into a superposition state, where it has an even 
probability of collapsing in either state: 

𝐻 =  
1

√2
 [

1 1
1 −1

] 

One example of a two-qubit quantum gate is the 
controlled-NOT gate, or CNOT. The first qubit is 
usually called the control bit and the second, target 
bit: If the control qubit is in state |1⟩, the gate will 
perform a Pauli-X gate on the target qubit. In matrix 
representation 

CNOT = [

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

] 

So, for example, let the control qubit = |1⟩ and the 
target qubit = |0⟩. You can represent the state of the 



 

two qubits as a single vector by taking the tensor 
product between each qubit: 

[
0

1
] ⊗ [

1

0
] =  [

0
0
1
0

] = |10⟩ 

Calculating the matrix multiplication 

CNOT = [

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

] [

0
0
1
0

] = [

0
0
0
1

] =  |11⟩ 

5.3 Interference 

Due to the wave-like behavior of quantum particles, 
qubits can exhibit interference patterns, as seen in 
double-slit experiments. And it turns out that 
interference plays an important role in developing 
quantum algorithms [7]. The objective is to arrange all 
the interference patterns in a way that only the 
computations of our interest in a given problem 
remains, and all the rest to cancel out [8]. Different 
paths leading towards a wrong answer are arranged 
in a way that destructively interfere and cancel 
eachother out, and paths towards the right answer 
will constructively interfere and add up [9]. One 
example is Grover’s  algorithm [10] for unstructured 
search, which uses amplitude amplification to find a 
single marked element. 

5.4 Decoherence and quantum error 
correction 

Quantum computers need an extremely appropriate 
environment, since maintaining the quantum 
properties of the quantum system is essential to keep 
its coherence, that is, maintaining the quantum state 
over time without disturbance by any external 
factors. If the quantum system is not perfectly 
isolated from the external environment, the 
properties of the environment can interfere with 
those of the system, compromising the computations 
[11]. There are also other factors that can cause a 
disturbance in the quantum system, such as 
incorrectly applied gates.  

One way to mitigate the problems of  decoherence of 
quantum states over arbitrarily long periods of time 
is using techniques of Quantum Error Correction, or 
QEC. At its most basic level, QEC uses the idea of 
redundant encoding [12]. Like classical error 
correcting codes, redundant information is added in 
a way that you will be able to identify which 
information transmitted was wrong, and correct it. 
For example, Shor [13] developed a 9-qubit error 
correcting code that  is able to correct a logical qubit 
from one bit-flip, one phase-shift or both, where a 
single qubit is encoded into nine qubits. 

6. Complexity theory 

The difficulty of solving computational problems is a 
fundamental study in the field of computer science, 
more specifically in computational complexity 
theory. Difficulty is formalized in terms of the 

number of resources required by different models of 
computers to solve problems. Constraints of 
resources (time and space) and computation models 
(deterministic, nondeterministic, and probabilistic) 
are used to make classifications. It is concerned with 
the fundamental capabilities and limitations of 
computers [14].  

The theory is focused on determining the different 
types of problems based on how efficiently they can 
be solved. Easy problems can be classified as those in 
which you have a perfect method to arrive at a 
solution. Problems with only a modest method of 
finding solutions are considered more difficult. If 
there is no known method to efficiently solve a 
problem, it is considered hard [15]. 

The two most known classes are P and NP. The 
Polynomial-Time class, P, is the class of all decision 
problems (problems where there is a n-bit string 
input and the outputs is either yes or no) that are 
solvable in polynomial-time by a deterministic 
Turing machine, that is, a classical computer. 
Problems in this class can be easily solvable and 
verified, if given an answer, within polynomial time. 

NP is the set of decision problems that are solvable in 
polynomial time with a Nondeterministic Turing 
machine and verifiable in polynomial time by a 
deterministic Turing machine. This means that, 
though solving the problem is considered hard or 
even impossible for a classical machine, depending 
on the problem, verifying the answer in it is possible 
and easy [15]. There is also a subset of NP problems 
that are called NP-complete, which is the set of 
problems that, if you had an algorithm that can solve 
in polynomial-time any of the problems, then there 
exists a polynomial-time algorithm for all the NP 
problems [16].  NP-complete problems are considered 
as hard as the hardest problems in NP. 

The question of whether P = NP is not only the most 
important unsolved problem in computer science, 
but one of the deepest questions that human beings 
have ever asked, according to Scott Aaronson [16]. It is 
mostly believed that P ≠ NP, but there is still no 
formal proof. 

In quantum computation, there are different types of 
complexity classes. One of the most important 
classes is BQP, which stands for Bounded-error 
quantum polynomial time, as it represents the set of 
decision problems that can be efficiently solved by a 
quantum computer [17], with an error probability of 
at most 1/3. BQP is the quantum analogue for BPP 
(bounded-error probabilistic polynomial time), 
regarded as the complexity class of efficiently 
solvable problems by a Turing machine with an error 
probability of at most 1/3 [18]. 

 The exact relationship between all complexity 
classes is still unknown. There is evidence that BPP ≠ 
BQP, that is, whether quantum computing is more 
powerful than classical computing, such as Shor’s [2] 
algorithm for factoring and discrete logarithms, 
which is in the NP class. Furthermore, quantum 



 

computers are not known nor believed to be able to 
solve NP-complete problems efficiently [18]. 

 

Fig 2. Suspected relationship of BQP with other classes, 
where PSPACE is the class of problems solvable by a 
deterministic Turing machine using polynomial amount 
of memory. 

It is important to know that, even though the precise 
relationship between each complexity class is still 
unknown, the type of computable problems is the 
same for both quantum and classical computers, 
meaning that if a problem is incomputable for a 
classic computer, is also incomputable for a quantum 
one.  
 

7. Final considerations 

The development of the present article made it 
possible to obtain a brief knowledge in the 
mechanisms of quantum computers.  Classical and 
quantum computing offer distinct approaches to 
solving problems, and one is not to replace the other, 
rather complement each other. 

 Quantum computers are still in the early stages, 
being the first experimental implementation made in 
1998 [19], but there are already some use cases that 
are more efficient than their classical counterparts. 
Moreover, as the field evolve, many real-world 
applications will start to be feasible, such as 
efficiently simulation of quantum systems: useful for 
quantum chemistry, high-energy physics, cosmology, 
for example; cybersecurity: since most of modern 
encryption is based on RSA cryptography, which 
relies on the fact that factoring large prime numbers 
is hard (but not for a quantum computer), and so on 
[20] [21]. 
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