
UNIGOU Training 2023
Czech-Brazilian Academic Program

Quantum computation: a brief introduction

João Lucas Martinello de Oliveira

a Faculty of Engineering and Computer Science, Universidade Regional Integrada do Alto do Uruguai e das Missões
(URI), Rio Grande do Sul, Brazil, joaololiveira@aluno.santoangelo.uri.br.

Abstract. This article seeks to explain the basic concepts of Quantum Computation. While classical computers rely on
binary information transmitted through digital electrical signals and is processed through boolean logic, quantum
computers represent information as qubits, which can exist in a linear combination of states, and follows the rules of
quantum mechanics. They can be physically implemented as polarized photons, superconducting circuits and more. The
article explores quantum logic gates, the challenge of quantum decoherence and how quantum error correction tries to
mitigate it. Furthermore, computational complexity theory is introduced as a way of understanding the limitations of
classical and quantum computers and their differences. Even though the type of computable problems are the same for
quantum and classical, quantum computers have some advantages in efficiency for certain types of problems, such as
simulation of quantum systems, since the computations themselves are made in quantum systems, factorization of prime
integers and unstructured search.

Keywords. Quantum computing, quantum logic, quantum information, computational
complexity theory.

1. Introduction

Quantum computing is a relatively new field that is at
the direct intersection between computer science
and quantum mechanics. By leveraging properties
present at the quantum scale, we can represent
information and make computations in quantum
systems. But why use quantum computers to do
computations instead of a regular computer? What
kind of computations can a quantum computer do
that a classical Turing machine can’t? Richard
Feynman [1] observed that quantum systems cannot
be efficiently simulated by classical computers, due
the intrinsic properties of the systems. Furthermore,
Peter W. Shor [2] developed algorithms for quantum
computers to factorize prime numbers and discrete
logarithms in polynomial time, problems considered
hard on a classical computer.

The term “quantum computing” is becoming
increasingly popular as it approaches mainstream
media. Many believe quantum computing will
completely shift the computing paradigm and is here
to replace classical computers, without having any
deeper knowledge of its functioning. As approaching
a (relatively) new field, one can quickly lose sight of
scientific ground. For this reason, the proposed
article seeks to explain the foundations of quantum
computing in a simple manner, from basic concepts
of quantum physics, how information is represented
in classical and quantum computers, to how they fit
in the computational complexity theory.

2. Research Methods

A bibliographical review was conducted as the
primary research method. This process involved a
systematic identification and selection of relevant
literature related to the topic in different knowledge
databases.

3. Quantum mechanics concepts

To understand how a quantum computer works, it is
first necessary to understand some concepts in
quantum physics.

3.1 Wave function and measurement

Quantum particles exhibit both particle and wave
properties, depending on the experimental
circumstance.

In classical physics, the act of measurement doesn’t
affect an object. All the information of a classical
object can be known with precision without
necessarily disturbing it. In quantum physics, this is
not the case. The act of measurement of a quantum
particle plays a fundamental role [3]. Before
measurement, a quantum system can be described as
a wave function, which is a complex-valued
probability amplitude. This amplitude is a
representation of the probability distribution of the
system’s properties, like position and momentum.

 After measurement, the wave function “collapses” to
a random outcome according to the probability
distribution and returns to a regular classical
description.

4. Classical Computation

4.1 Information and processing

Classical computing relies on binary information.
Bits can be either in a 0 or 1 state and, as you increase
the number of bits in a single string, you increase the
number of possible representations by 2n, where n is
the length of the binary word. Physically, computers
use electrical signals to represent bits. A high voltage
level represents 1 and a low voltage level represents
0, for example.

To make computations, logic gates are utilized. They
perform on Boolean logic, that is, binary inputs to
produce a single binary output. Some gates take two
bits as input and produce a single bit output: the AND
gate outputs a 1 only when both inputs are 1. The OR
gate outputs a 1 only when at least one of the inputs
is 1. The NOT gate is a single input gate that inverts
the value entered. There are multiple logic gates, and
together they are used to create circuits that can
perform more complex computations.

It is important to highlight that classical computing is
mostly described and operated within the
mathematical framework of discrete math, as it deals
with discrete, binary data.

5. Quantum computation

5.1 Qubits

In quantum computation, the elementary unit is a
quantum bit, or qubit. The state of a qubit can be
represented as a vector in a two-dimensional
complex vector space:

|𝜓⟩ = α|0⟩ + β|1⟩

Where |𝜓⟩ is the state vector (holds all the
information of the system) of the qubit; |0⟩ and |1⟩
are the basis state, corresponding to the classical
binary states 0 and 1. They can also be represented
as matrices:

|1⟩ = [
0
1

]

|0⟩ = [
1
0

]

α and β are complex numbers that describes the
probability amplitude of the qubit being in the |0⟩ or
|1⟩ states, respectively. It’s important to know that α
and 𝛽 must satisfy the condition

|α|2 + |𝛽|2 = 1

since the probabilities must sum to one, as it
guarantees the measurement to be in either state [4].

This means that, different from a classical bit, which
can only be at one state, qubits can exist as a linear
combination of states, which is also called a
superposition of states [5].

There is another way of visualizing single qubits, and
that is in the form of a three-dimensional sphere,

often called a Bloch sphere. It provides a way to
visualize all the states that a qubit can possibly be in.

Fig 1. Bloch sphere representation of a qubit.

 Any state of a qubit in this representation can be
written as:

|ψ⟩ = 𝑐𝑜𝑠 (
θ

2
) |0⟩ + 𝑒iϕ𝑠𝑖𝑛 (

θ

2
) |1⟩

Where the angle θ corresponds to latitude and angle
ϕ corresponds to longitude.

There are a few different ways of physically
implementing a qubit, such as using polarization of a
photon; ion traps; superconducting circuits and
more [6].

5.2 Quantum logic gates

Analogue to classic computing, quantum computers
also use logic gates to perform computations.
However, different types of gates are utilized. The
following are some examples of quantum gates that
operates on a single qubit: the Pauli-X gate, or just X
gate, is the quantum equivalent of a classical NOT
gate:

𝑋: |0⟩ → |1⟩ or |1⟩ → |0⟩

In the form of a matrix:

X = [
0 1
1 0

]

The Hadamard gate, represented by H, puts a qubit
into a superposition state, where it has an even
probability of collapsing in either state:

𝐻 =
1

√2
 [

1 1
1 −1

]

One example of a two-qubit quantum gate is the
controlled-NOT gate, or CNOT. The first qubit is
usually called the control bit and the second, target
bit: If the control qubit is in state |1⟩, the gate will
perform a Pauli-X gate on the target qubit. In matrix
representation

CNOT = [

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]

So, for example, let the control qubit = |1⟩ and the
target qubit = |0⟩. You can represent the state of the

two qubits as a single vector by taking the tensor
product between each qubit:

[
0

1
] ⊗ [

1

0
] = [

0
0
1
0

] = |10⟩

Calculating the matrix multiplication

CNOT = [

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

] [

0
0
1
0

] = [

0
0
0
1

] = |11⟩

5.3 Interference

Due to the wave-like behavior of quantum particles,
qubits can exhibit interference patterns, as seen in
double-slit experiments. And it turns out that
interference plays an important role in developing
quantum algorithms [7]. The objective is to arrange all
the interference patterns in a way that only the
computations of our interest in a given problem
remains, and all the rest to cancel out [8]. Different
paths leading towards a wrong answer are arranged
in a way that destructively interfere and cancel
eachother out, and paths towards the right answer
will constructively interfere and add up [9]. One
example is Grover’s algorithm [10] for unstructured
search, which uses amplitude amplification to find a
single marked element.

5.4 Decoherence and quantum error
correction

Quantum computers need an extremely appropriate
environment, since maintaining the quantum
properties of the quantum system is essential to keep
its coherence, that is, maintaining the quantum state
over time without disturbance by any external
factors. If the quantum system is not perfectly
isolated from the external environment, the
properties of the environment can interfere with
those of the system, compromising the computations
[11]. There are also other factors that can cause a
disturbance in the quantum system, such as
incorrectly applied gates.

One way to mitigate the problems of decoherence of
quantum states over arbitrarily long periods of time
is using techniques of Quantum Error Correction, or
QEC. At its most basic level, QEC uses the idea of
redundant encoding [12]. Like classical error
correcting codes, redundant information is added in
a way that you will be able to identify which
information transmitted was wrong, and correct it.
For example, Shor [13] developed a 9-qubit error
correcting code that is able to correct a logical qubit
from one bit-flip, one phase-shift or both, where a
single qubit is encoded into nine qubits.

6. Complexity theory

The difficulty of solving computational problems is a
fundamental study in the field of computer science,
more specifically in computational complexity
theory. Difficulty is formalized in terms of the

number of resources required by different models of
computers to solve problems. Constraints of
resources (time and space) and computation models
(deterministic, nondeterministic, and probabilistic)
are used to make classifications. It is concerned with
the fundamental capabilities and limitations of
computers [14].

The theory is focused on determining the different
types of problems based on how efficiently they can
be solved. Easy problems can be classified as those in
which you have a perfect method to arrive at a
solution. Problems with only a modest method of
finding solutions are considered more difficult. If
there is no known method to efficiently solve a
problem, it is considered hard [15].

The two most known classes are P and NP. The
Polynomial-Time class, P, is the class of all decision
problems (problems where there is a n-bit string
input and the outputs is either yes or no) that are
solvable in polynomial-time by a deterministic
Turing machine, that is, a classical computer.
Problems in this class can be easily solvable and
verified, if given an answer, within polynomial time.

NP is the set of decision problems that are solvable in
polynomial time with a Nondeterministic Turing
machine and verifiable in polynomial time by a
deterministic Turing machine. This means that,
though solving the problem is considered hard or
even impossible for a classical machine, depending
on the problem, verifying the answer in it is possible
and easy [15]. There is also a subset of NP problems
that are called NP-complete, which is the set of
problems that, if you had an algorithm that can solve
in polynomial-time any of the problems, then there
exists a polynomial-time algorithm for all the NP
problems [16]. NP-complete problems are considered
as hard as the hardest problems in NP.

The question of whether P = NP is not only the most
important unsolved problem in computer science,
but one of the deepest questions that human beings
have ever asked, according to Scott Aaronson [16]. It is
mostly believed that P ≠ NP, but there is still no
formal proof.

In quantum computation, there are different types of
complexity classes. One of the most important
classes is BQP, which stands for Bounded-error
quantum polynomial time, as it represents the set of
decision problems that can be efficiently solved by a
quantum computer [17], with an error probability of
at most 1/3. BQP is the quantum analogue for BPP
(bounded-error probabilistic polynomial time),
regarded as the complexity class of efficiently
solvable problems by a Turing machine with an error
probability of at most 1/3 [18].

 The exact relationship between all complexity
classes is still unknown. There is evidence that BPP ≠
BQP, that is, whether quantum computing is more
powerful than classical computing, such as Shor’s [2]
algorithm for factoring and discrete logarithms,
which is in the NP class. Furthermore, quantum

computers are not known nor believed to be able to
solve NP-complete problems efficiently [18].

Fig 2. Suspected relationship of BQP with other classes,
where PSPACE is the class of problems solvable by a
deterministic Turing machine using polynomial amount
of memory.

It is important to know that, even though the precise
relationship between each complexity class is still
unknown, the type of computable problems is the
same for both quantum and classical computers,
meaning that if a problem is incomputable for a
classic computer, is also incomputable for a quantum
one.

7. Final considerations

The development of the present article made it
possible to obtain a brief knowledge in the
mechanisms of quantum computers. Classical and
quantum computing offer distinct approaches to
solving problems, and one is not to replace the other,
rather complement each other.

 Quantum computers are still in the early stages,
being the first experimental implementation made in
1998 [19], but there are already some use cases that
are more efficient than their classical counterparts.
Moreover, as the field evolve, many real-world
applications will start to be feasible, such as
efficiently simulation of quantum systems: useful for
quantum chemistry, high-energy physics, cosmology,
for example; cybersecurity: since most of modern
encryption is based on RSA cryptography, which
relies on the fact that factoring large prime numbers
is hard (but not for a quantum computer), and so on
[20] [21].

8. References

[1] R.P. Feynman, Simulating physics with
computers. Int. J. Theor. Phys. 1982; 21 (6): 467–
488.

[2] P.W. Shor, Polynomial-time algorithms for prime
factorization and discrete logarithms on a
quantum computer, SIAM J. Comput. 1997: 26 (5)
1484– 1509.

[3] A. C. Philips. Introduction to Quantum Mechanics.

Manchester Physics Series. John Wiley & Sons;
2013.

[4] Azure Quantum documentation. The qubit in
quantum computing. Available at:
https://learn.microsoft.com/en-
us/azure/quantum/concepts-the-qubit. Access
date: Sept, 07th 2023.

[5] Nielsen MA, Chuang IL. Quantum Computation
and Quantum Information: 10th Anniversary
Edition. Cambridge: Cambridge University Press;
2010.

[6] Ladd, T., Jelezko, F., Laflamme, R. et al. Quantum
computers. Nature; 2010; 464: 45–53.

[7] McMahon, David. Quantum computing explained.
John Wiley & Sons; 2007.

[8] Aharonov, Dorit. Quantum Computation. Annual
Reviews of Computation Physics VI; 1999. pp 259-
346

[9] Mandel, Jacob R. "Quantum Computing: Resolving
Myths, From Physics to Metaphysics.”; 2021.

[10] Grover, Lov. K. A fast quantum mechanical
algorithm for database search. Proceedings of the
Twenty-Eighth Annual ACM Symposium on Theory
of Computing; 1996.

[11] DiVincenzo, David P. Quantum
Computation. Science; 1995. vol. 270, no. 5234 : 255–
61.

[12] Devitt, Simon, J. et al. Quantum error correction for
beginners. Rep. Prog. Phys. 76 076001; 2013.

[13] Shor, P. W. (1995). Scheme for reducing
decoherence in quantum computer memory.
Physical Review A; 1995. 52, R2493

[14] Sipser, Michael. Introduction to the Theory of
Computations. Course Technology Cengage
Learning; 2013.

[15] Aaronson, Scott. Lecture 6: P, NP, and Friends.
PHYS771: Quantum Computing Since Democritus.
University of Waterloo; lecture given Fall 2006

[16] Watrous, John. Quantum Computational
Complexity. Encyclopedia of Complexity and
Systems Science; 2018. Available at:
https://doi.org/10.48550/arXiv.0804.3401.

[17] Bernstein, Ethan, Varizani, Umesh. Quantum
complexity theory. Proceedings of the Twenty-
fifth annual ACM symposium on Theory of
computing; 1993. 11-20.

[18] Aaronson, Scott. "Why philosophers should care
about computational complexity." Computability:

https://learn.microsoft.com/en-us/azure/quantum/concepts-the-qubit
https://learn.microsoft.com/en-us/azure/quantum/concepts-the-qubit
https://doi.org/10.48550/arXiv.0804.3401

Turing, Gödel, Church, and Beyond; 2013. 261.

[19] Chuang, Isaac L., Gershenfeld, Neil, Kubinec,
Mark. Experimental Implementation of Fast
Quantum Searching. Phys. Rev. Lett.; 1998. 80,
3408.

[20] Georgescu, Iulia M., Sahel Ashhab, and Franco
Nori. "Quantum simulation." Reviews of Modern
Physics ; 2014. 86.1 153. Available at:
https://doi.org/10.48550/arXiv.1308.6253

[21] Bova, F., Goldfarb, A. & Melko, R.G. Commercial
applications of quantum computing. EPJ
Quantum Technol; 2021. 8, 2.

